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Why this is important:
models fail to effectively use source and target

o context gates which weigh source and target contexts help
in both RNNs (Tu et al., 2017; Wang et al., 2018) and Transformer (Li et al., 2020)
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Why this is important:
models fail to effectively use source and target

o context gates which weigh source and target contexts help
RNNs (Tu et al., 2017; Wang et al., 2018) and Transformer (Li et al., 2020)

IN both

* when hallucinating, a
(Lee et al, 2018,

model fails to use source

Berard et al., 2019)

Evidence is based on heuristics.
E.g., most of attention is concentrated on source EOS
or only on a few frequent tokens

Picture from: Leeet al., 2018 A



This can also be useful for other applications

A method which estimates how a model uses source may pbe useful to

* evaluate technigues which force a model to rely on input

e evaluate models for other tasks where reliance on source is
Important
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(A Bit of) the Training Process (work in progress)
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Our Approach:
L ayerwise Relevance Propagation
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What do we want?

GXP Previous wWork:
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tokens influence a prediction
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oredictions:
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part of the total contribution
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What do we want?
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Layerwise Relevance Propagation

forward pass
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* DacK-propagates relevance

recursively from the output

layer to the input

llustration from: http://danshiebler.com/2017/7-04-16-deep-taylor-Irp/
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Layerwise Relevance Propagation
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Why LRP: Layerwise Conservation Principle
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e Cconstant
* equals the prediction

:/- N
| |
0. ;
|\~ g ¥ .‘
! .‘-‘
/! .'\' ‘.".:“\‘
! ™
. |
.0 F 4 "'l
/ ~\I . "v
) J
l. ) '5'
:',‘
. '."
. ,:"
. /
J
O P [ ] ([ ]
I I [ ] ’

\We can evaluate relative contribution of input elements!

llustration from: http://danshiebler.com/2017/7-04-16-deep-taylor-Irp/

10


http://danshiebler.com/

Conservation Principle in NMT Models

Fncoder Decoder

I saw a |cat

[ ... ) .ttt 4+t
O000C | 000
0000 ©600
4 Buaen KOTHO <e0s> I saw a
source target prefix

11



Conservation Principle in NMT Models

Encoder Decoder Eﬂzgfﬁfjﬁ
P(cat) Dack
AT A a0 v
O O g O O O O O
- T 3
OO¢O O O O O
9 BUOen KOTH <eos> I saw a

source target prefix



Conservation Principle in NMT Models

P(cat) Dack
 F ) o v
O O g O O 0O O O
: —t {1
OO¢O O O O O
4 Buaen KOTHO <e0s> + I saw a = |P(cat)

source target prefix



Conservation Principle in NMT Models

Encoder Decoder
P(cat)
© 00 0O 0.0 00
9 Buaen KoTHO <eos> + I saw a = |P(cat) (divide by P(cat))
9 BuAen KOTHO <e0s> + I saw a — 1

Relative contribution of source and target tokens 15
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Conservation Principle in NMT Models
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Conservation Principle in NMT Models
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What We Do
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e Can beinaccurate for
small contributions

* relevancies may
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* general patterns

* how these patterns cha

nge

(e.g., across models, datasets,

training stages, etc)
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Getting Acquainted



We look at: total contribution and entropy

Target position 1
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We look at: average over a dataset
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We look at: average over a dataset

SOUrce farget E.g., source contributions
at each target step
“I" “saw"” “cat” /
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target token position

We see: general pattern
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Source Contribution to Different Target Positions

source — target(k)

c 0.861
@)
2
3 0.85-
j -
re
S 0.84-
O
Q
Y 0.83-
Cj) generation Progresses
Nogot  —/————————>
o
2 5 10 15 20 23

target token position

20



Source Contribution to Different Target Positions

source — target(k)

= 0.86- Source influence decreases
@
L
3 0.85-
j -
e
o 0.84-
O
(D)
Y 0.83-
3 generation progresses
v -
0.82-
’
2 5 10 15 20 23

target token position

20



Source Contribution to Different Target Positions

source — target(k)

- 0.86] \>ource influence decreases
= -or the EOS token, the
B 0.85- source is used much
= less than for other
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Entropy of Source Contributions
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Entropy of Source Contributions
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Entropy of Source Contributions

First, as generation
orogresses, the model
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Entropy of Source Contributions

Entropy of source contributions

2.985-
2.980+
§2.975- N
= 2.970" :
‘GE) o High entropy for
| ounctuation and EOS:
2.960- finalizing a translation
2.955- requires a broader context
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target token position
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Summary

During generation,

e source influence decreases

o entropy of source contributions goes up till the half
of the translation, then down

22
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Model Prefixes are Simpler

Compared to references,
beam search translations:

e cOntain fewer rare tokens

* Nave less reoderings

e are simpler syntactically
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Model vs Reference Prefixes

With model-generated prefixes:
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Model vs Reference Prefixes

With model-generated prefixes:

e sourcels used more

source — target(k) / Entropy of source contributions
L * source contributions
0.861 -
= 2 are more confident 5 98-
3085 \\\\
= > :
o e
) | (-
3 0.83 | V596
= Prefix Prefix
©0.82"
e reference b 2 95 e reference
0.81- model model
2 5 10 15 20 23 1 5 10 15 20 23

target token position target token position



Random vs Reference Prefixes

orefix of a random sentence

"T saw a hungry cat on a mat yesterday” /
P(...|Buepa s Buaen ronoaHoro kota Ha matpace, The man in a blue shirt)
source target prefix
~ &

do not make sense together

2/



Random vs Reference Prefixes

"T saw a hungry cat on a mat yesterday”
P(...|Buepa s Buaen ronoaHoro kota Ha matpace, The man in a blue shirt)

source target prefix
N &

Why random prefixes?

 We want to understand what happens
when a model is hallucinating

 Random prefixesisasimple way to
simulate hallucination mode

2/
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Random vs Reference Prefixes

Previous work
/
NMT models can 62?

| O
hallucinate

|.e. decoder ignores
source and samples
from its language mode

\

LMs can ighore
gibberish prefixes

l.e. they have the
self-recovery ability

What will our model do?

23



Random vs Reference Prefixes

source — target(k)

0.925;

\ Prefix

~ 0.900 \"\ » reference
.g b e random
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—
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)
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target token position

29



Random vs Reference Prefixes

source — target(k)

When a random 0.9257 : Prefix
porefix is short, the ~0.900- I » reference
model “recovers”: 2 0 a7 ; » random

tignores the prefix &
| € 0.850

(very high source S :
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) |
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Random vs Reference Prefixes
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Summary: Different Prefixes

Reference vs Model prefixes

* amodel uses source more and does it more confidently

* probably because model-generated prefixes are simpler

Reference vs Random prefixes

* |f arandom prefixis short, a model ignores the prefix

* |farandom prefix islong, a model ignores the source
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EXposure bias and Hallucinations

Training objective Exposure bias

MLE (standard) suffer

Minimum Risk Training o notsufier
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EXposure bias and Hallucinations

Previous work (

Training objective Exposure bias

MLE (standard) suffer

Minimum Risk Training ~ do notsuffer
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Random prefix, source contribution
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Random prefix, source contribution
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Random prefix, source contribution

Model

baseline

word dropout, source

word dropout, target

Minimum Risk Training

- Xposure bias

suffer

suffer

do not suffer

50.875-
s
£ 0.850-
O

source — target(k)

0.925;
~ 0.900-

O
v 0.825-
O
S 0.800-
(Vp)

0.775-

Model

e baseline
wd, source
wd, target

MRT /

Wi
IgNo

IS

th MRT, models

the source |less

than any other model

/

2

5 10 15 20 23
target token position

33



Random prefix, source contribution
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Random prefix, source contribution
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Random prefix, entropy of source contributions
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Random prefix, entropy of source contributions
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Summary: Exposure Bias and Hallucinations

Compared to models where the exposure bias is mitigated,

 Models suffering from exposure bias are more prone to
over-relying on target history (and hence to hallucinating)
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\VVarying Amount of Training Data
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VVarying Amount of Training Data

With more data, models use source:
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The Training Timeline

We will be uncovering this experiment by experiment

- ———

<4k <12k < 50k > 50k
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Changes in Contributions
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The Training Timeline

<4k <12k
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The Training Timeline
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Convergence of contributions
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Source Contributions: Changes are Not Monotonic
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The Training Timeline
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The Training Timeline
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Entropy of Contributions: Not Monotonic

Entropy of source contributions
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The Training Timeline
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Entropy of source contributions
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Entropy of source contributions

The Training Timeline
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<4k <12k < 50k > 50k
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The Training Timeline

e a lot of chanae
O

e source influence decreases e contributions converge, small changes
e entropy of contributions decreases ° | |
e source influence increases
e a lot of change e entropy of contributions increases

¢ almost no change
® entropy of contributions
slightly decreases

O

© source Influence increases
e entropy of contributions increases

<4k <12k < 50k > 50k
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The Training Timeline

e a lot of chanae
O

e source influence decreases e contributions converge, small changes
e entropy of contributions decreases ° | |
e source influence increases
e a lot of change e entropy of contributions increases

O

© source Influence increases
e entropy of contributions increases

¢ almost no change
® entropy of contributions
slightly decreases

<4k <12k
l |

Early positions change
more and are learned first

< 50k > 50k

More details in the paper!
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The Training Timeline

e a lot of change
¢« more change for early positions

e source influence decreases e contributions converge, small changes
e entropy of contributions decreases ®| equal change across positions
e source influence increases
o a lot of change e entropy of contributions increases

¢ almost no change
® entropy of contributions
slightly decreases

o more change for early positions
e source influence increases
e entropy of contributions increases

<4k <12k < 50k > 50k
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The Training Timeline

e a lot of change
e more change for early positions

e source influence decreases e contributions converge, small changes
e entropy of contributions decreases ® equal change across positions
e source influence increases
o a lot of change e entropy of contributions increases

¢ almost no change
® entropy of contributions
slightly decreases

© more change for early positions
e source influence increases
e entropy of contributions increases

<4k <12k < 50k > 50k
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Relation to Previous Work
4 4 Stages by Frankle et al, 2020:

Rapid motion in weight space Weight magnitudes increase linearly
Gradient magnitudes remain

Performance increase decelerates, but is still rapid roughly constant
/ Rewinding begins to become highly effective

»Large sign changes (3% in first 10 it)

"4
4
/

Gradient magnitudes reach a minimum
before stabilizing 10% higher

/ Weight magnitude increase slows
Motion in weight space slows, but is still rapid

PerformancesIoYva.asymptotes ¢ :Ou nd When Va‘datl r]g the
ottery ticket (LT) hypothesis

Performance increases rapidly,
reaching over 50% eval accuracy

e match well with ours

Training iterations

ResNet-20 on CIFAR-10, Frankle et al, I[CLR 2020

e a |ot of change
e more change for early positions

e source influence decreases ® contributions converge, small changes
e entropy of contributions decreases ® equal change across positions
e source influence increases

a lot of change e entropy of contributions increases
more change for early positions
source influence increases

e entropy of contributions increases

® almost no change
® entropy of contributions
slightly decreases

<4k <12k < 50k > 50k
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Relation to Previous Work

Gradient magnitudes are very large
40 Rapid motion in weight space
»Large sign changes (3% in first 10 it)

"4
J

Gradient magnitudes regch a minimum
before stabilizing 10% higher

Motion in weight space

Performance increases
reaching over 50% evallaccuracy

Gradients converge to roughly constant magnitude
/ Weight magnitudes increase linearly
/ Gradient magnitudes remain
Performance increase decelerates, but is still rain roughly constant

Rewinding begins to become highly effective . . .
/ / Weight magnitude increase slows

= = ) Performance slowly asymptotes
slows, but is still rapid —a
] Benefit of rewinding saturates
rapidly,

Training iterations

ResNet-20 on CIFAR-10, Frankle et al, I[CLR 2020

e a |ot of change

e more change for early positions o
e source influence decreases e contributions converge, small changes

e entropy of contributions decreases ® equal change across positions

a lot of change

o more change for early positions
o source influence increases
e entropy of contributions increases

<4k <12k

e source influence increases

e entropy of contributions increases

® almost no change

® entropy of contributions
slightly decreases

< 50k > 50k

Stages by Frankle et al, 2020:

 found when validating the
ottery ticket (LT) hypothesis

e match well with ours

* rewinding (for LT) starts to
work at stage 3 - when the
contributions already
convergead
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Contributions and their Entropy: Not Monotonic
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Contributions and their Entropy: Not Monotonic

Changes are not monotonic:
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Contributions and their Entropy: Not Monotonic

Changes are not monotonic:

Source contributions

ti | | » decrease
g 0.86071 T i
= 4
= 0.8551 * 1
= 7
O E
O 0.850 :g i
5 I N o + increase
9'0.8451 1 g
> | '
© L

0 10k 20k 30k 40k 50k
number of batches

(entropy behaves similarly)

o



Contributions and their Entropy: Not Monotonic
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Contributions and their Entropy: Not Monotonic

Source contributions
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Why is this interesting/useful?

e Sometimes, complexity level (or

regularity) of the data is important Translations from specific stages
N training may be useful

o SMT-inspired model modifications The analysis can help for (i)
often help understanding the NMT model,

and/or (ii)) modeling

e Youroptions?
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Conclusions

« \Weshow that LRP can be used to evaluate relative
source and target contributions to NMT predictions

 Some of the findings are:

o WIth more data, models use source more and are
more confident in the choice of important tokens

o models suffering from exposure bias are more
orone to over-relying on target history

o tralning process is Nnot monotonic

with several distinct stages Target LM -> Lexical stuff -> alignments




Source and Target Contributions to NMT Predictions

Source and Target Contributions to NMT Predictions

This is a post for the paper Analyzing the Source and Target
Contributions to Predictions in Neural Machine Translation. I

4

——— - —

In NMT, the generation of a target token is based on two types O O g O ; O
of context: the source and the prefix of the target sentence. O O O
We show how to evaluate the relative contributions of source 5 suaen KoTio <eos>

and target to NMT predictions and find that: _

e models suffering from exposure bias are more prone to

over-relying on target history (and hence to hallucinating)

than the ones where the exposure bias is mitigated,;
e models trained with more data rely on the source more and do it more confidently;
e the training process is non-monotonic with several distinct stages.

== read more @ read paper  </> view code October 2020
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Context-Aware NMT

o ACL 20138: Context-Aware NMT Learns Anaphora Resolution

When interaction with context is limited, what does a model learn?

o ACL 2019: When a Good Translation is Wrong in Context

Which phenomena are the most important and how to
evaluate them?

Usually, you have lots of sentence-level parallel data
and only a bit of document-level. What can you do?

o EMNLP 2019: Context-Aware Monolingual Repair for NMT

Context-Aware NMT model without parallel document-level data




(ACL 2019) Transformer’s Attention Heads:
Important are Interpretable, the Rest can be Pruned

The Story of Heads

This is a post for the ACL 2019 paper Analyzing Multi-Head

Self-Attention: Specialized Heads Do the Heavy Lifting, the 34{ B rpositional
Rest Can Be Pruned. =P B syntactic
[D (] 6{ (] rare tokens
] unknown
. . = {L 0 —
From this post, you will learn: 0] ([3 2 @
. . 8 | m B C @
e how we evaluate the importance of attention heads B<E E] (@ B8 B
. B 808 8 8 0 @
in Transformer B 8 B:/E B B 0 O
e which functions the most important encoder heads - K V- = B m
perform E 8 8 \B E @ 2@80C
- _ | 0 E 8 808 0 BB RgE@2@
e how we prune the vast majority of attention heads in 2 8 8 08 B BB EREOE
48 30 17 14 11 9 | 6 5 4 3 2 1

Transformer without seriously affecting quality
e which types of model attention are most sensitive to the number of attention heads and on which layers

= read more  |g& read paper  </> view code June 2019



(EMNLP 2019) Evolution of Representations in the Transformer

Evolution of Representations in the Transformer

This is a post for the EMNLP 2019 paper The Bottom-up
Evolution of Representations in the Transformer: A Study with

Machine Translation and Language Modeling Objectives.

We look at the evolution of representations of individual
tokens in Transformers trained with different training
objectives (MT, LM, MLM - BERT-style) from the
Information Bottleneck perspective and show, that:

e | Ms gradually forget past when forming predictions about future;

e for MLMs, the evolution proceeds in two stages of context encoding and token reconstruction;
e MT representations get refined with context, but less processing is happening.

= read more | read paper September 2019



(EMNLP 2020) Information-Theoretic Probing with MDL

Information-Theoretic Probing with MDL

This is a post for the EMNLP 2020 paper Information-

Theoretic Probing with Minimum Description Length. Probe: Standard —  Description Length
Measure: final | __, | final \how “hard” it is
Probing classifiers often fail to adequately reflect "~ | quality quality ) to achieve it
differences in representations and can show different
e.g., accuracy Codelength

results depending on hyperparameters.

As an alternative to the standard probes,
e we propose information-theoretic probing which measures minimum description length (MDL) of labels
given representations;
e we show that MDL characterizes both probe quality and the amount of effort needed to achieve it;
e we explain how to easily measure MDL on top of standard probe-training pipelines;
e we show that results of MDL probes are more informative and stable than those of standard probes.

= read more |@ read paper  </> view code March 2020




Students/interns: BPE-Dropout (ACL 2020)

BPE-Dropout: Simple and Effective Subword Regularization

lvan Provilkov™, Dmitrii
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BPE: deterministic

-melianenko™, Elena Voita
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BPE-Dropout: stochastic
(usein training, get profit)




Students/interns: GraphGlove (EMNLP 2020)

Embedding Words in Non-Vector Space with Unsupervised Graph Learning

Max Ryabinin, Sergei Popov, Liudmila Prokhorenkova, Elena Voita

GloVe

(Euclidean or Poincare)
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| ena Voita

°hD student, Uni Edinburgh & Uni Amsterdam
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