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Recent work at TeMU

e Language-specific models:

o Spanish: Spanish Language Models. Asier Gutiérrez-Fandino*, Jordi Armengol-Estapé*, Marc Pamies,
Joan Llop-Palao, Joaquin Silveira-Ocampo, Casimiro Pio Carrino, Aitor Gonzalez-Agirre, Carme
Armentano-Oller, Carlos Rodriguez-Penagos, Marta Villegas. Preprint.

o ...

e Domain-specific models:

o Spanish Legal Domain (coming soon).

o Spanish Biomedical Domain (coming soon).

o ...

e In this talk, we are going to go through the challenges and benefits of scaling language models.
e Disclaimer: Figures have been shamelessly stolen from OpenAl articles.
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Language Modeling (the tasks)
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Language Models (the models themselves)

Many choices!
e Can we use a non-deep learning based algorithm? | strongly advise not to do that.
e RNNs are the intuitive, natural choice.
e Can we use convolutional neural networks? Yes, with remarkable success.
e But... you don’t mean we can use MLPs? Yes, we can, with impressive results (MLP mixer, etc).
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Why do we care about language modeling?

1. The task itself has interesting applications:
a. Smartphone predictive keyboards.
b. Code completion.
c. Etc.
2. Surrogate task for learning about our domain/modality.
Can be applied in downstream tasks (transfer learning)
Virtually infinite streams of data (self-supervised learning).
Virtually all* computable tasks can be casted as language (sequence) modeling tasks:
E.g., in vision: next pixel/patch/codework prediction.

B W

5. Transformers scale well. Transformers can be used as language models out of the box.
Therefore, let’'s do language modeling!

*Can you think of a counter-example? Because | can't.
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Downstream applications

Zero-shot Fine-tuning

The model predicts the answer given only a natural language The model is trained via repeated gradient updates using a

P (Ve ry) Old . featu re extra CtIOI’l ] description of the task. No gradient updates are performed. large corpus of example tasks.
Translate English to French task description sea otter => loutre de mer example #£1

e OlId (?): Fine-tuning, adapters. cheese =

e New: few-shot learning.

One-shot peppermint => menthe poivrée example #2

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task descriptior
sea otter => loutre de mer example
plush giraffe => girafe peluche example #N
cheese => prompt
Few-shot
cheese => prompt

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed

Translate English to French: lask descriptior
sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche
Barcelona cheese => prompt
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Modalities

1. Text-based (natural language, code, chemical compounds,,...):
Use the Transformer out-of-box, optionally with (B)BPE encoding.
Non-differentiable (MDPs, POMDPSs): i) Explore with some policy 1. ii) Likelihood-based imitation learning.
Continuous:
a. Direct: Model raw data taking pixels, patches, etc.
b. Indirect:
i. Discretize your data with a VQ-based model (VAE, GAN).
ii. Use the /oo, »
iii.  Profit. i oo
4. Multi-modal? s
just concatenate. 5 ‘ |
5. Long sequences?
Efficient, even
linear-time NN
Transformer . # / s |
variants. . 2
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Scale

Just scaling language models up does NOT show
the diminishing results one would expect.

More on that later.
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Scaling Machine Learning

Deep Learning

e Classical statistical/machine learning view: Normal things happen.

Performance

e Deep learning view: very weird (even AGI/-ish) things happen at scale:
o Double Descent.\ Not really tested
o (Grokking). at “scale”.
o Scaling Laws.
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Scaling Laws

Originally formulated by OpenAl researchers:
e Scaling Laws for Neural Language Models (Kaplan, 2020) (OpenAl)
e Scaling Laws for Autoregressive Generative Modeling (Henighan, 2020) (OpenAl)
e Scaling Laws for Transfer (Hernandez, 2021) (OpenAl)

Now starting to gain momentum:
e Explaining Neural Scaling Laws (Bahri, 2021) (Deepmind)
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Scaling Laws: Results

e Performance depends strongly on the scale:

o Compute (FLOPs), C.

o Data size (tokens), D.

o Model size (number of non-embedding parameters), N.
e And very weakly on the model shape (hyperparameters such as depth and width).
e They are called laws because they are physics-like formulae verified empirically.
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Scaling Laws: The Basics
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.
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Scaling Laws: Optimal Compute Allocation

Larger models require fewer samples The optimal model size grows smoothly

to reach the same performance with the loss target and compute budget

Line color indicates

Test Loss 10 10 number of parameters
-
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- Compute-efficient
_~~ training stops far
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Scaling Laws: Optimal Compute Allocation

For a given compute budget (e.g., GPU hours), it's better to train a larger model for less iterations.

B

109 Minimum serial steps > Data requirements
) InArancas M ikl \eo T ativaly <lawl
increases negligibly —~ ‘&‘5 grow relatively slowly
se(\ e ]
b J -
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10 Optimal model size
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-
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Compute (PF-days)

Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger
models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in
compute. For optimally compute-efficient training, most of the increase should go towards increased model
size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to
increase parallelism through larger batch sizes, with only a very small increase in serial training time required.
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Scaling Laws: Results

e Convergence is inefficient.

e Test loss correlates with transfer loss.
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Scaling Laws: Extensions

e Other modalities: OpenAl applied the same setup to image modeling, video, text-to-image, image-to-text,
and mathematics modeling and found scaling laws holding across ALL modalities.
o They use the exact same model (GPT) for all modalities, with the exact same training procedure!

e OpenAl also did a more in-depth study of the scaling laws of transfer (specifically, from English to Python).

Pre-trained on Text Trained from Scratch
3x10° from scratch curves
- 108
2x10° "
2 -
= 107 €
10°
10° 4
- — 10°

10 10 10 107 10" 10® 100 10 10 10" 107 10" 10 10%

compute compute

Figure 4 In the low data regime. fine-tuning gets better performance than training from scratch for a given
amount of training compute and it’s much easier to be on the compute efficient frontier. The performance gap
widens severely as the model size grows with a fixed amount of python. (Curves for 3e8 python characters)
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Well-known facts in language modeling?

1. Data are the main bottleneck?

2. You need to train for many epochs?

3. You need regularization?

4. Large models are less sample-efficient?
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Well-known facts in language modeling?

OpenAl just used a tiny portion of the English CommonCrawl for training GPT-3.
Virtually infinite streams of data: Youtube, books, CCTV, football matches, music, large internet crawls.
OpenAl successfully fine tuned a huge model on a dataset with less than 100 samples.

One epoch is all you need (Komatsuzaki, 2019).

Virtually impossible to overfit in a huge, diverse dataset, in a single epoch.
Latest OpenAl models do NOT use dropout.

Larger models are MORE sample-efficient!

We'’ve found we can improve language model behavior with respect to specific
behavioral values by fine-tuning on a curated dataset of <100 examples of those
values. We also found that this process becomes more effective as models get larger
While the technique is still nascent, we're looking for OpenAl API users who would
like to try it out and are excited to find ways to use these and other techniques in

Rrvadons production use cases.
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Moore’s law?

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
50,000,000,000

Moore’s Law: The number of transistors on microchips doubles every two years
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Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

QurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.
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Moore’s Law?

e Massively parallel GPU-based programming has kept Moore law kind of alive.
e However, both RAM and VRAM haven’t keep up.
o And we said that model size was the key ingredient!
e GPUs are very expensive (thanks, Dogecoin...).
e Hardware bottleneck.
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Scaling model size

e The theory says that we should prioritize model scaling.
e In practice, this presents some challenges:

o Memory!

o Numerical instability

o Batch size.
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Deepspeed

DeepSpeed + ZeRO

Scale
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1. OpenAl & co plans

e OpenAl is probably working on multi-modal GPT and a scaled up version of video GPT (subtle hints on
Twitter and papers).

e Google/Deepmind are jumping on the scaling laws bandwagon (Explaining Neural Scaling Laws).
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Towards Scaling-Laws-aware ML Research

e What if the majority of algorithms supposedly outperforming their baselines are actually just an artifact of the
specific (typically small) scale in which their were evaluated?
e We can’t* run OpenAl-scale models...
e ... but compute gets cheaper every year.
e Researchers should test their method in different compute, model size, and data regimes to show that it
scales better than the baseline.
e Toy problems are unrealistic. But some “artificial” low-resource scenarios (standard benchmarks with a given
data size) are unrealistic too.
e Still, there is no guarantee that the improvements will hold in OpenAl-like scales.
o See “L11 Language Models -- guest instructor: Alec Radford (OpenAl) --- Deep Unsupervised Learning
SP20”
e Plus, some computationally interesting methods are actually more difficult to scale than others due to
hardware constraints.
o The Hardware Lottery (S. Hooker, 2020).

*We could. It's just ~€1B/year = 0.2% of the Spanish Government annual budget.
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Scaling Laws as a research field on its own

e Propose a method with advantageous scaling laws.
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e Scale Scaling Laws Themselves: Scaling Scaling Laws with Board Games (Jones, 2021)
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Back to TeMU models

e Data size: BNE dataset is almost the same order of magnitude than the dataset sampled in GPT-3!
o Our clean crawling: 576 GB. OpenAl’s sample: 570 gb
o OpenAl added Books corpus, Wikipedia, etc.

e Batch size:
o GPT-3 batch size is only 3 times bigger than TeMU’s models (10,48,576 tokens).

e Model size: > 230x

parameters
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e Consider not using PyTorch: JAX is gaining momentum.

Addendum: PyTorch DL/NLP libraries

° Huggingface:
©)

©)
©)
©)

xcellent for model sharing, inference, fine tuning.
Easy to convert from JAX-TF-PyTorch.

The'trainer has subtle bugs.

In our experience, considerably slower than Fairseq.

e [airseq:

O

©)
©)
©)

Problem: it's a framework instead of a library.

If your use case fits, it's very fast.
Many tricks (e.g., loss scaling)
Convert trained models to H

e Mistral:

©)
©)

Stanford’s library for training big LMs.

Based on HF

e Eleuther Al libraries:

©)
©)
©)

GPT Neo: TF.
GPT Neox: PyTorch.
GPT-J: Jax.

e Lightning Transformers?

Center
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Siddharth Karamcheti @siddkaramcheti - Aug 24

Replying to @siddkaramcheti and @BramVanroy

To be more concrete; in our talk earlier today at the Workshop, @laurel_orr1
and | talked about stability issues with GPT training; these fixes involve
things like upcasting the scaled dot-prod attn to FP32 when doing mixed
precision: github.com/stanford-crfm/.... (2/N)

stanford-crfm/ CRFM
mistral 7

Mistral: A strong, northwesterly wind: Framework for
transparent and accessible large-scale language
model training, built with Hugging Face &
Transformers...
A7 ©s w216 % 13

Contributors SSUes Stars Fork O
mistral/mistral_gpt2.py at main - stanford-crfm/mistral
Mistral: A strong, northwesterly wind: Framework for transparent and
accessible large-scale language model training, built with Hugging Fac...
& github.com

% n Q O

Siddharth Karamcheti @siddkaramcheti - Aug 24

There are other things; re-arranging the order of operations in scaled dot-
prod -- scale K by 1/root(dk) first, prior to dot product github.com/stanford-
crfm/....

Also, borrowing from Megatron-LM -- scale further by 1 / layer_idx to
prevent overflow: github.com/stanford-crfm/.... (3/N)

M n M 22 ™



Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

@

Language Models
at Scale

Thanks. Questions?

Life Sciences Department Seminar




