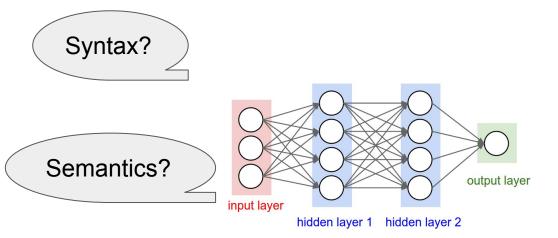
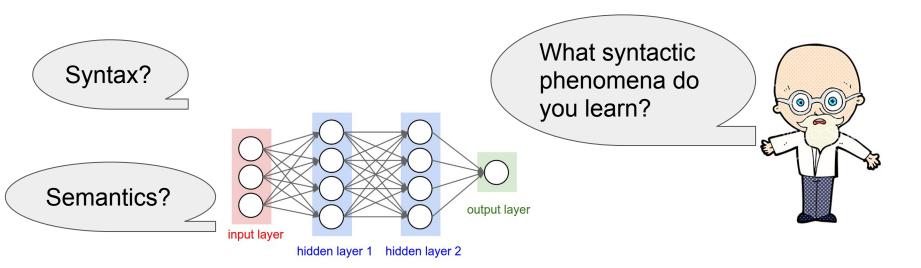
# What Do Recurrent Neural Network Grammars Learn About Syntax?

Adhiguna Kuncoro Miguel Ballesteros Lingpeng Kong Chris Dyer Graham Neubig Noah A. Smith

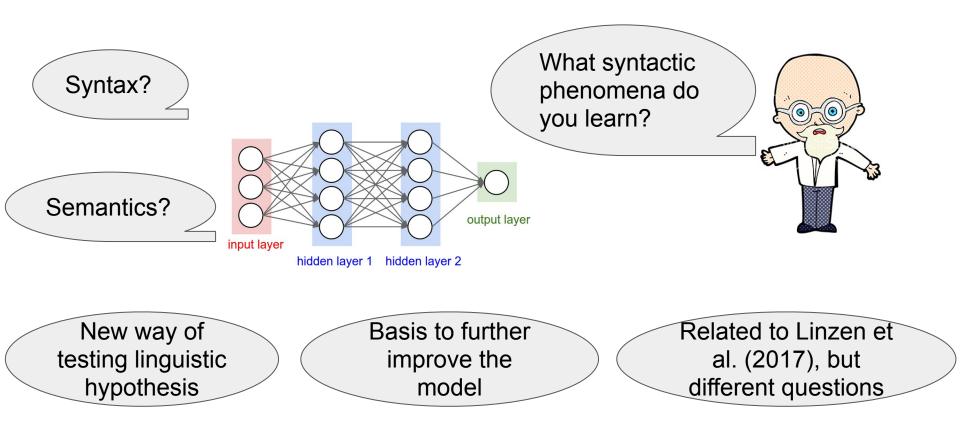
Carnegie Mellon University • C DeepMind UNIVERSITY • f WASHINGTON Language Models Are Mini-Linguists!



#### Language Models Are Mini-Linguists!

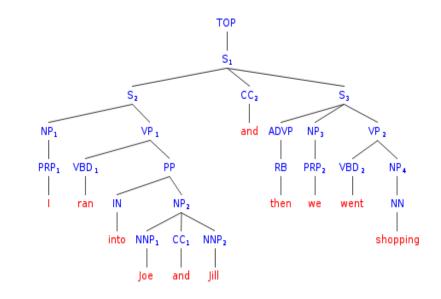


#### Language Models Are Mini-Linguists!



#### Two Ways of Generating Sentences





P(**x**, **y**)

#### Overview

- Crash course on Recurrent Neural Network Grammars (RNNG)
- Three concrete linguistic questions about what the RNNG learns

| No.<br>Steps | Stack | String Terminals | Action |
|--------------|-------|------------------|--------|
| 0            |       |                  | NT(S)  |
|              |       |                  |        |
|              |       |                  |        |
|              |       |                  |        |
|              |       |                  |        |
|              |       |                  |        |
|              |       |                  |        |

| No.<br>Steps | Stack | Terminals | Action |
|--------------|-------|-----------|--------|
| 0            |       |           | NT(S)  |
| 1            | (S    |           | NT(NP) |
|              | 1     | <u> </u>  | 1      |
|              |       |           |        |
|              |       |           |        |
|              |       |           |        |
|              |       |           |        |

| No.<br>Steps | Stack    | Terminals | Action   |
|--------------|----------|-----------|----------|
| 0            |          |           | NT(S)    |
| 1            | (S       |           | NT(NP)   |
| 2            | (S   (NP |           | GEN(the) |
|              |          |           |          |
|              |          |           |          |
|              |          |           |          |
|              |          |           |          |

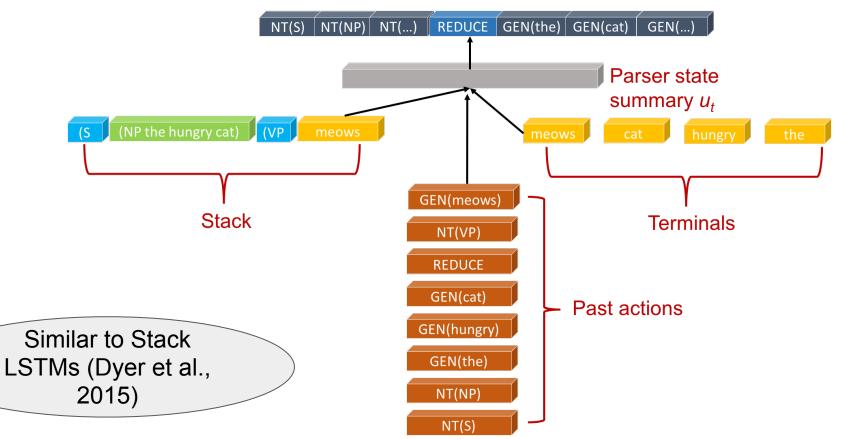
| No.<br>Steps | Stack                 | Terminals | Action            |
|--------------|-----------------------|-----------|-------------------|
| 0            |                       |           | NT(S)             |
| 1            | (S                    |           | NT(NP)            |
| 2            | (S   (NP              |           | GEN( <i>the</i> ) |
| 3            | (S   (NP   <i>the</i> | the       | GEN(hungry)       |

| No.<br>Steps | Stack                   | Terminals  | Action      |
|--------------|-------------------------|------------|-------------|
| 0            |                         |            | NT(S)       |
| 1            | (S                      |            | NT(NP)      |
| 2            | (S   (NP                |            | GEN(the)    |
| 3            | (S   (NP   <i>the</i>   | the        | GEN(hungry) |
| 4            | (S   (NP   the   hungry | the hungry | GEN(cat)    |

| No.<br>Steps | Stack                                 | Terminals      | Action            |
|--------------|---------------------------------------|----------------|-------------------|
| 0            |                                       |                | NT(S)             |
| 1            | (S                                    |                | NT(NP)            |
| 2            | (S   (NP                              |                | GEN( <i>the</i> ) |
| 3            | (S   (NP   <i>the</i>                 | the            | GEN(hungry)       |
| 4            | (S   (NP   <i>the</i>   <i>hungry</i> | the hungry     | GEN( <i>cat</i> ) |
| 5            | (S   (NP   the   hungry   cat         | the hungry cat | REDUCE            |

| No.<br>Steps | Stack                         | Terminals      | Action      |
|--------------|-------------------------------|----------------|-------------|
| 0            |                               |                | NT(S)       |
| 1            | (S                            |                | NT(NP)      |
| 2            | (S   (NP                      |                | GEN(the)    |
| 3            | (S   (NP   <i>the</i>         | the            | GEN(hungry) |
| 4            | (S   (NP   the   hungry       | the hungry     | GEN(cat)    |
| 5            | (S   (NP   the   hungry   cat | the hungry cat | REDUCE      |
| 6            | (S   (NP the hungry cat)      | the hungry cat | NT(VP)      |

#### **Model Architecture**



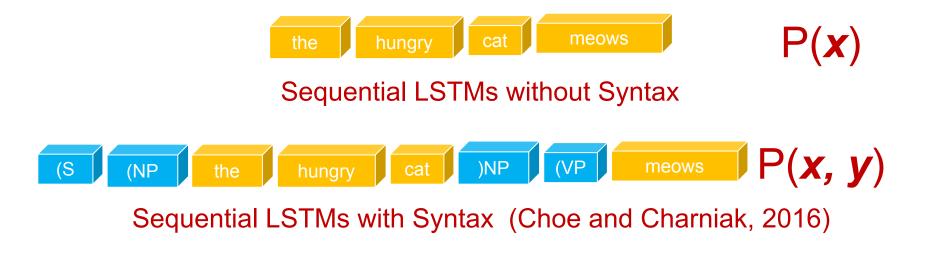
#### **RNNG vs Sequential LSTMs**



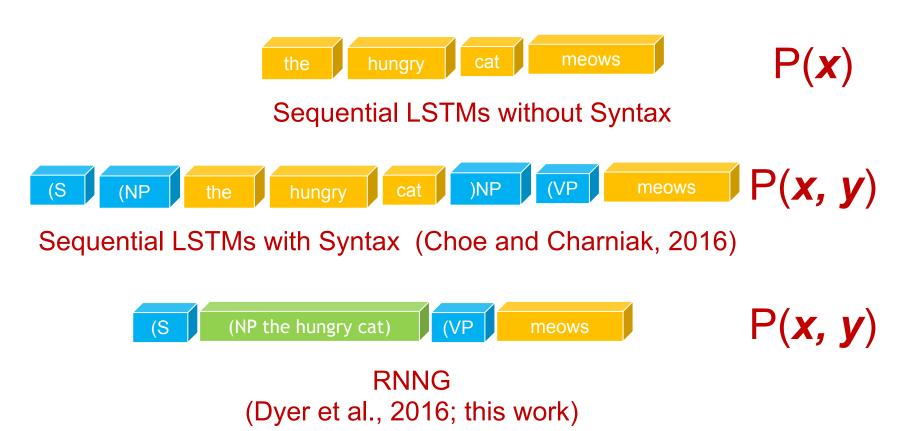


Sequential LSTMs without Syntax

### **RNNG vs Sequential LSTMs**



## **RNNG vs Sequential LSTMs**

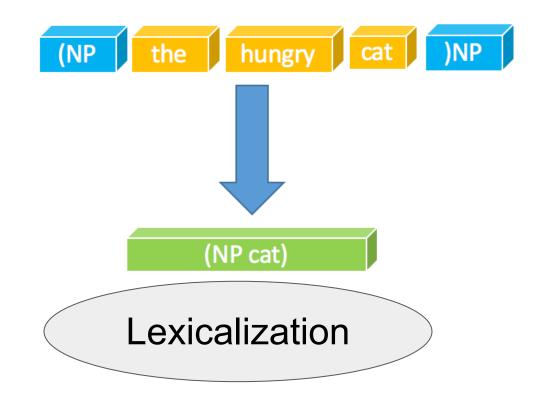


## PTB Test Experimental Results

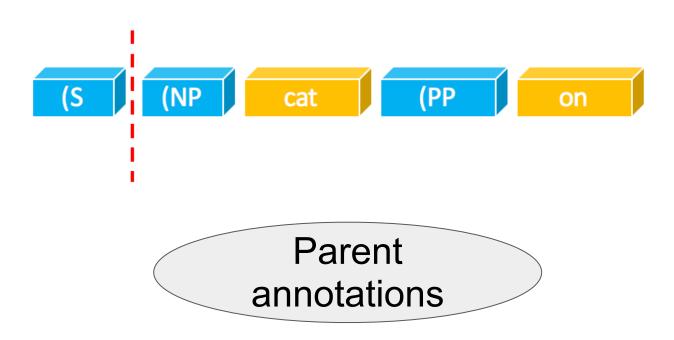
## Parsing F1

| Model                                 | Parsing<br>F1 | LM Ppl.            |         |
|---------------------------------------|---------------|--------------------|---------|
| Collins (1999)                        | 88.2          | Model              | LM ppl. |
| Petrov and Klein (2007)               | 90.1          | IKN 5-gram         | 169.3   |
| RNNG                                  | 93.3          | Sequential LSTM LM | 113.4   |
| Choe and Charniak (2016) - Supervised | 92.6          | RNNG               | 105.2   |

#### What Can RNNGs Learn?



#### What Can RNNGs Learn?

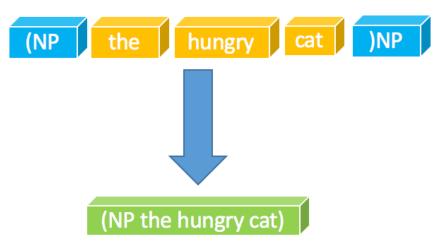


#### **Question 1**

#### How important is explicit modeling of composition?

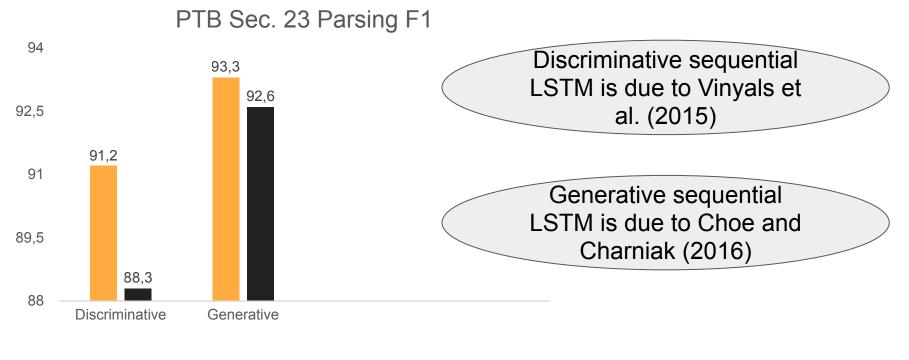
Method: Contrast to models that lack composition function

Result: Composition and syntactic recency are key



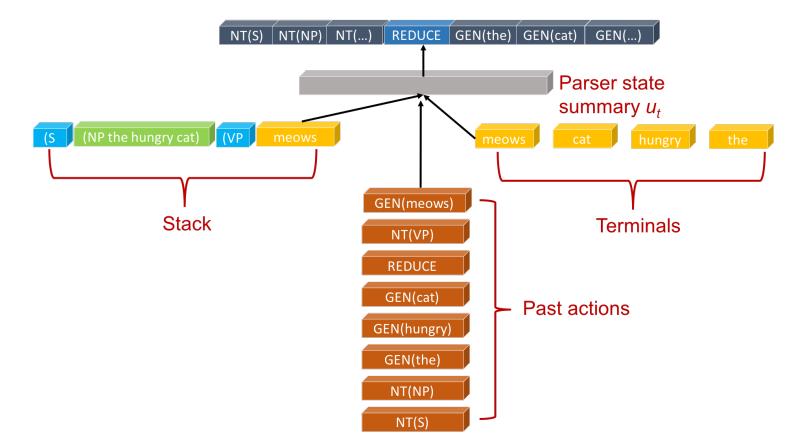
### How Important Is Composition?

RNNG

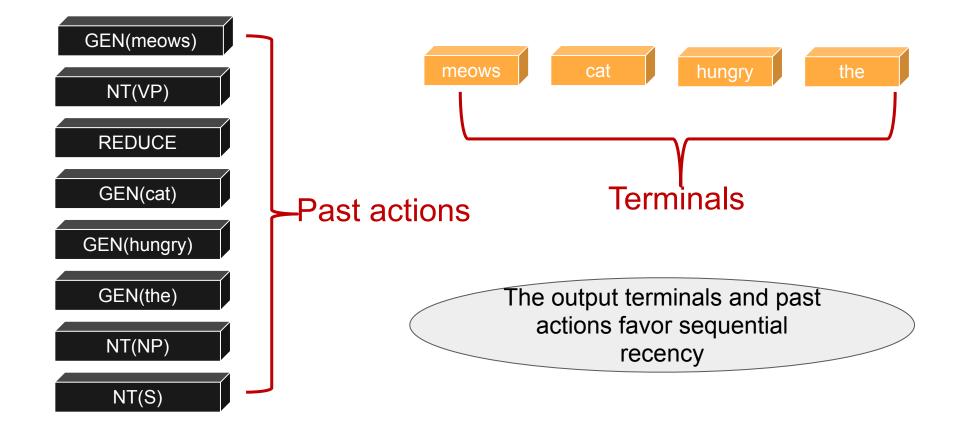


Sequential LSTMs

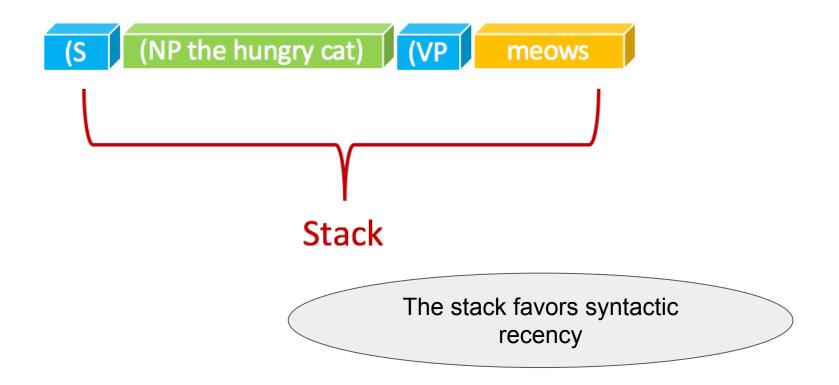
#### More Evidence that Composition is Key



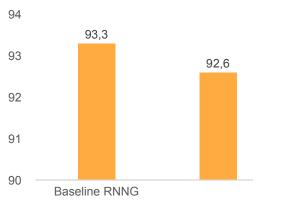
#### the Output Terminals and Past Actions: Sequential Recency



#### **Composition and Syntactic Recency**



#### Ablation Results: Parsing F1

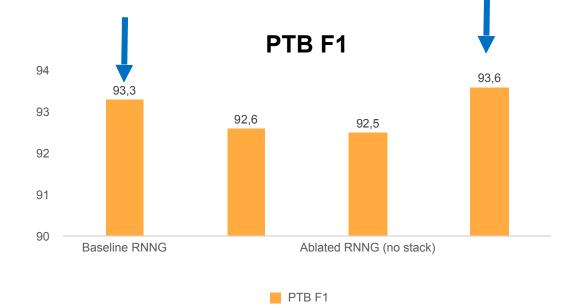


PTB F1

PTB F1

93.6

#### Ablation Results: Parsing F1



By conversion, Stack-only RNNG achieves the best results for dependency parsing (**95.8** UAS)

### How Important Is Composition?

- The stack (the only element with explicit composition) is most important
- Ablating the stack provides little or no gain over sequential LSTMs in both parsing and language modeling
- RNNG with only a stack outperforms variant configurations

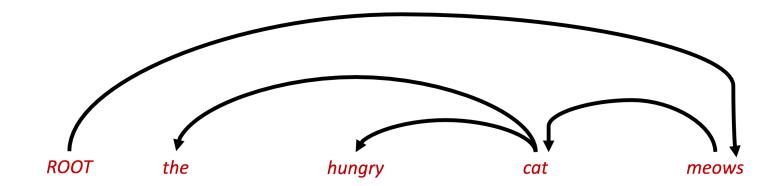
An inductive bias favoring syntactic recency is more important than sequential recency for parsing and language modeling!



#### Does the model discover headedness?

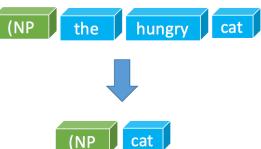
Method: New interpretable attention-based composition function

Result: sort of

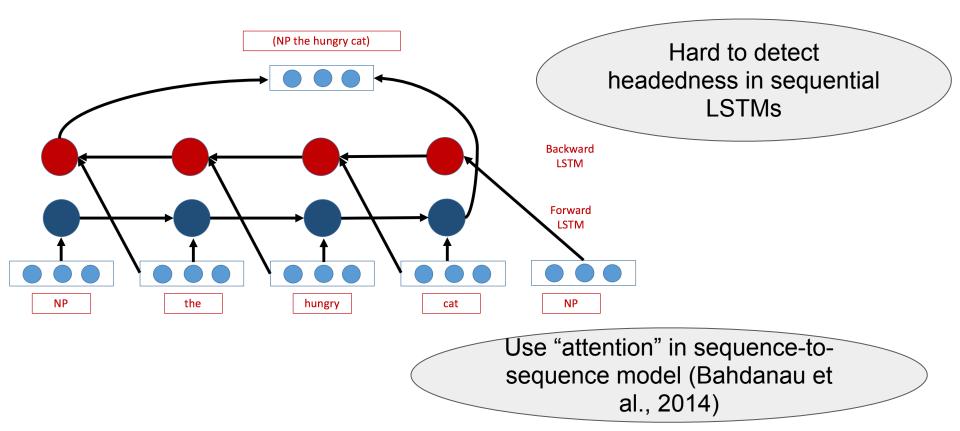


#### Headedness

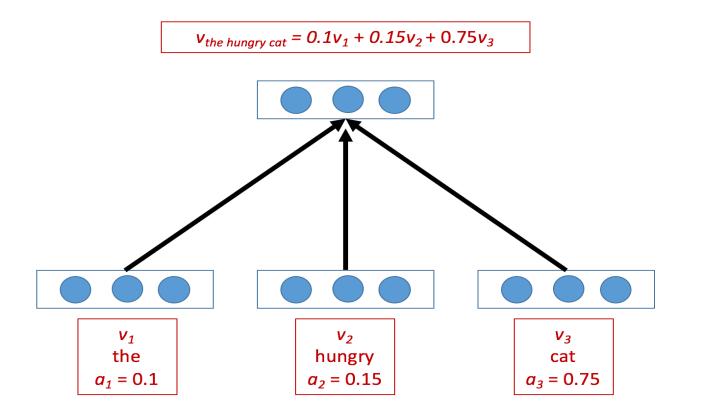
- Linguistic theories of phrasal representation involve a strongly privileged lexical head that determines the whole representation
- Hypothesis for single lexical heads (Chomsky, 1993) and multiple ones for tricky cases (Jackendoff 1977; Keenan 1987)
- Heads are crucial as features in non-neural parsers, starting with Collins (1997)



### **RNNG** Composition Function



#### Key Idea of Attention



#### **Experimental Results: PTB Test Section**

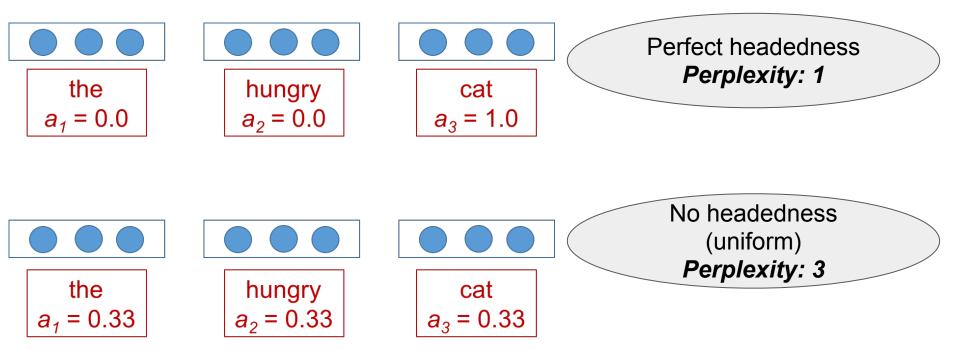
## Parsing F1

| Model                             | Parsing<br>F1 |
|-----------------------------------|---------------|
| Baseline RNNG                     | 93.3          |
| Stack-only RNNG                   | 93.6          |
| Gated-Attention RNNG (stack-only) | 93.5          |



| Model                             | LM<br>Ppl. |
|-----------------------------------|------------|
| Sequential LSTM                   | 113.4      |
| Baseline RNNG                     | 105.2      |
| Stack-only RNNG                   | 101.2      |
| Gated-Attention RNNG (stack-only) | 100.9      |

#### **Two Extreme Cases of Attention**



#### Learned Attention Vectors

#### **Noun Phrases**

the (0.0) final (0.18) hour (0.81)

their (0.0) first (0.23) **test (0.77)** 

**Apple (0.62)**, (0.02) Compaq (0.1) and (0.01) IBM (0.25)

NP (0.01), (0.0) and (0.98) NP (0.01)

#### Learned Attention Vectors

#### Verb Phrases

to (0.99) VP (0.01)

did (0.39) **n't (0.60)** VP (0.01)

VP (0.15) and (0.83) VP (0.02)

handle (0.09) **NP (0.91)** 

Learned Attention Vectors

#### **Prepositional Phrases**

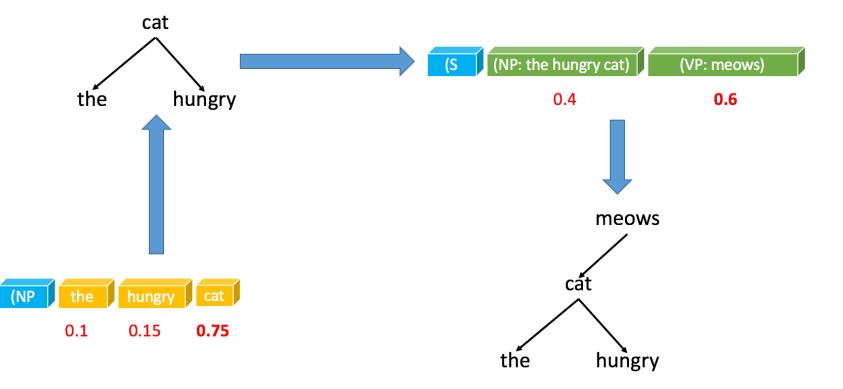
of (0.97) NP (0.03)

in (0.93) NP (0.07)

by (0.96) S (0.04)

NP (0.1) after (0.83) NP (0.06)

#### Quantifying the Overlap with Head Rules



#### Quantifying the Overlap with Head Rules

| Reference           | UAS   |
|---------------------|-------|
| Random baseline     | ~28.6 |
| Collins head rules  | 49.8  |
| Stanford head rules | 40.4  |

#### Question 3

#### What is the role of nonterminal labels?

Method: Ablate the nonterminal label categories from the data

Result: Nonterminal labels add very little

**Nonterminal Ablation** 

# (S (NP the hungry cat) (VP meows) .)

(X (X the hungry cat) (X meows) .)

**Quantitative Results** 

Gold: (X (X the hungry cat) (X meows) .)

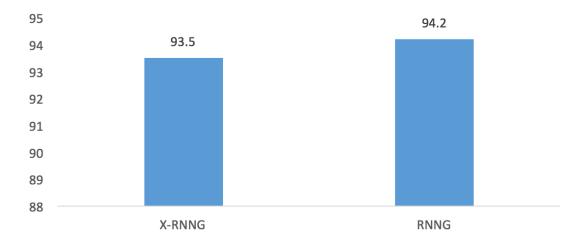
Predicted: (X (X the hungry) (X cat meows) .)

#### **Quantitative Results**

#### Gold: (X (X the hungry cat) (X meows) .)

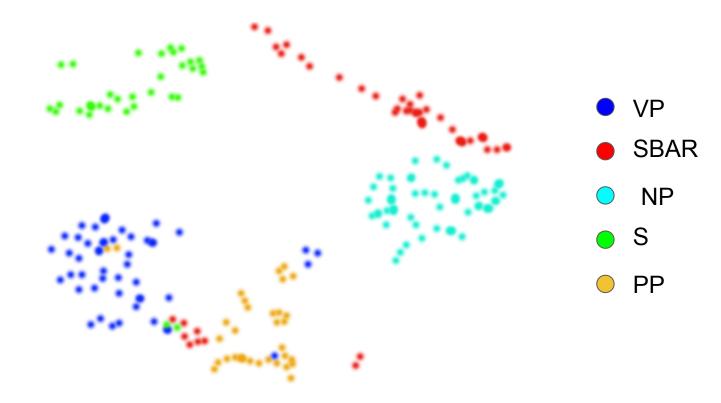
#### Predicted: (X (X the hungry) (X cat meows) .)

PTB Unlabeled Bracketing F1



PTB Unlabeled Bracketing F1

#### Visualization



#### Conclusion

 Composition is important (the inductive bias of syntactic recency is beneficial for parsing and language modeling)

It helps the model do better quantitatively

It helps us analyze the model to the extent that we did

- RNNG learns (imperfect) headedness, which is both similar and distinct to linguistic theories
- RNNG is able to rediscover nonterminal information given weak bracketing structures, and also make nontrivial semantic distinctions

#### Why Are RNNGs Better than RNNs?

- Composition is key
- Composition is picking out heads
  - Syntactic recency is a good bias for modeling language